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ABSTRACT 

This thesis proposes a scheme for short-range (<500m) underwater acoustic 

communications in shallow water.  The proposed scheme is a variation on an existing 

commercial modem reliably used for medium-range (<5km) communications in the 9-14 

kHz band. The proposed scheme exploits a higher carrier frequency at 45 kHz and 

increased spectral bandwidth compatible with the short-range link, thus achieving an 

increased channel capacity. Analytical expressions are provided for the scheme, which 

combines principles of M-ary frequency-shift keying (MFSK) and orthogonal frequency-

division multiplexing (OFDM) in a modulation referred to as multi-channel MFSK.  The 

proposed scheme consists of 32 orthogonally spaced channels, each of which contains a 

4-ary FSK pulse train.  Existing medium-range modem algorithms are adapted for the 

higher carrier frequency and candidate variations are implemented with bandwidths of 10 

and 20 kHz.  The variations involve bandwidth scaling or multiplexing the original 5 kHz 

spectral bandwidth.  Of concern for short-range links in shallow water is multipath 

interference, which causes time-spreading and significant intersymbol interference (ISI).  

Dominant eigenray paths are determined in order to estimate the amount of time-spread 

expected in various shallow water environments.  These are analyzed with respect to the 

time/frequency relationships of multi-channel MFSK to comparatively evaluate the 

candidate variations in terms of protection against ISI.  On this basis, we propose 

multiplexing the 5 kHz MFSK modulation across the larger operating band. 
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I. INTRODUCTION 

A. BACKGROUND 

The development of Seastar, an underwater acoustic local-area network (LAN), is 

enabling short-range (50-500 meters), high-frequency (35-55 kHz) networked 

communications [1].  Seastar uses a basic star topology in which a set of peripheral nodes 

(sensors, divers, UUVs, platforms, etc.) transmit data to a central node for processing.  

The central node can also communicate with a wide-area network (WAN), such as 

Seaweb, an underwater acoustic WAN [2-4], for dissemination of processed data.  The 

deployment of Seastar with Seaweb, depicted in Figure 1, allows for multiple clusters of 

nodes, each with its own central node, and each forming its own separate LAN, to add an 

additional tier of networked communications within the greater Seaweb WAN topology. 

 
Figure 1.   Seastar LAN and Seaweb WAN concept. 

Currently, Seastar modems use the same modulation scheme that has been 

optimized for Seaweb modems, despite operating in a completely different frequency 

band (Seaweb operates in the 9-14 kHz band).  The Seaweb scheme, a form of M-ary 

frequency-shift keying (MFSK) called multi-channel MFSK, has been proven to perform 

robustly in a variety of channel conditions [5]. 
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In June 2007, available Seaweb modems were configured as a prototype Seastar 

network and deployed in St. Andrew’s Bay, Florida [4].  The goal of this sea testing was 

to observe the effects of natural and man-made noise on network performance in a 

shallow water environment.  The results of this testing yielded favorable results, though 

the prototype operated at the 9-14 kHz band rather than the envisioned 35-55 kHz Seastar 

operating band.  Nevertheless, due to the success of the prototype testing, we now seek to 

design candidate variations of multi-channel MFSK that could be used aboard the high-

frequency Seastar telesonar modems in future Seastar implementations. 

B. SCOPE 

The scope of this research includes a mathematical description of the multi-

channel MFSK modulation scheme currently used aboard the Seaweb and Seastar 

modems.  Multi-channel MFSK combines principles of traditional MFSK as well as 

frequency-division multiplexing (FDM).  Simulation results of several candidate 

implementations of multi-channel MFSK are presented. 

This thesis examines alternative methods by which to improve the reliability of 

Seastar by tuning its communication scheme for the 35-55 kHz band.  The primary 

concern of this research is to evaluate for the various candidate modulation schemes the 

effects of intersymbol interference (ISI), in an effort to improve the reliability of short-

range, high-frequency underwater acoustic communications. 

C. APPROACH 

Underwater acoustic communication draws upon a wide base of knowledge 

involving physics, acoustics, electrical engineering, digital communications theory, and 

computer network theory.  The multi-disciplinary field brings together academicians, 

scientists, engineers, and users from a wide variety of backgrounds and industries, both 

civilian and military.  When discussing communications systems, it is often useful to 

place the discussion in the context of the Open Systems Interconnection reference model, 

shown in Figure 2.  The simulations and analyses conducted in this thesis will be 

restricted to the physical layer, which includes modulation, transmission, channel effects, 
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reception and demodulation.  Unique to this form of communication, it is necessary to 

discuss principles of underwater acoustics as the basis for the physical layer. 

 
Figure 2.   The Open Systems Interconnection model. 

Chapter II describes acoustic modeling of the underwater transmission channel 

and quantifies fundamental characteristics of underwater acoustic propagation as they 

relate to digital communications.  A wideband acoustic link budget analysis is presented 

for the 35-55 kHz band of frequencies in which Seastar is designed to operate. 

Chapter III contains a mathematical representation of the multi-channel MFSK 

modulation scheme, providing additional equations for bandwidth scaling and frequency 

multiplexing. 

Chapter IV describes reception of the multi-channel MFSK signal using fast 

Fourier transform (FFT) based demodulation.  Performance in a noisy channel is 

characterized in the form of a symbol error rate (SER) curve for the FFT-based 

demodulation. 

Chapter V contains channel simulations evaluating the performance of various 

implementations of multi-channel MFSK in various channel geometries.  Error analysis is 

presented with attention to ISI. 

Chapter VI summarizes our findings and recommends implementing a specific 

variation of multi-channel MFSK for use in the Seastar LAN. 
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II. THE COMMUNICATION CHANNEL 

Figure 3 shows a simple model for the transmission of a signal x(t) through a 

linear, time- and space-invariant channel with impulse response h(t).  From basic 

communication theory, we know the received signal y(t) is simply a convolution of x(t) 

with h(t) [6]. 

 
(a) 

 

 
(b) 

Figure 3.   (a) Simple model of a linear, time- and space-invariant communication 
channel.  The received signal y(t) is a convolution of the transmitted signal x(t) 

with the channel impulse response h(t).  (b) The equivalent of (a) in the frequency 
domain.  The spectrum Y( f ) of the received signal is the product of the 
transmitted signal’s spectrum X( f ) and the channel’s spectrum H( f ). 

With the advent of underwater acoustic digital communications, the ocean 

medium has increasingly been treated as a communication channel characterized by its 

impulse response.  Because transmission loss of sound propagating through the ocean is 

highly dependent on frequency, a broadband signal with a flat transmitted spectrum will 

be received as a signal that is by no means flat.  The signal may also become spread in 

time and frequency, and can experience phase shifts.  Thus, in the context of a 

communication channel, the ocean may be treated as a wideband, linear, time- and space-

variant, distorting filter.  Attempts to find an analytic expression for the impulse response 

of such a channel have proven extremely difficult because of the time- and space-variant 

nature of the ocean [7].  Consequently, we simplify the channel by treating it as time- and 

space-invariant. 

The frequency dependence of sound propagation has a direct impact on 

communications parameters like source-receiver range, transmission frequency, and 

bandwidth.  As a result, it is imperative to characterize and account for the sources of 



 6

transmission loss in the underwater acoustic communication channel, and to identify 

optimal transmission parameters that ultimately assure successful demodulation of the 

transmitted signal.  In this chapter, we describe the acoustic channel modeling software 

used to determine the multipath arrival characteristics of the channel, and we review 

principles of sound propagation in a fading acoustic communication channel. 

A. THE ACOUSTIC CHANNEL MODEL 

We model the underwater acoustic communication channel using the Bellhop 

Gaussian beam tracing propagation model.  The model, developed in 1987 by Porter and 

Bucker at the Space and Naval Warfare Systems Center in San Diego, has since been 

migrated into a MATLAB graphical user interface (GUI) available from the Centre for 

Marine Science and Technology at the Curtin University of Technology at Perth, 

Australia [8].  The interface allows users to model multiple layers of water and sediment, 

each with its own set of unique environmental parameters, such as the sound-speed 

profile (SSP), density, and root-mean-square (RMS) roughness.  The model is capable of 

producing channel impulse responses, ray traces, source-to-receiver eigenrays, and two-

dimensional transmission loss plots.  The version of Bellhop used for this research is 

coupled to a bottom-loss model called Bounce [8].  From this point forward, we refer to 

the model as the Bellhop model.  Further information about the Bellhop model is given in 

Appendix C. 

In order to more clearly illustrate the time/frequency relationships for the various 

candidate modulation schemes, we model propagation in a more simplified environment 

than would be found in nature.  We define the simplified environment to consist of a 

homogeneous half-space of seawater with an isospeed SSP of 1500 m/s, extending from 

the sea surface to a depth of 205 m.  The bottom half-space is assumed to be a fluid-like 

stratum consisting of quartz sand and extending to a 500 m depth below the sea surface.  

These and additional parameters are included in Table 1. 
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Parameter Value 
Depth 205 m 
Range 50 – 500 m 
Bottom Type Quartz sand 
Compressional Sound Speed (Water) 1500 m/s 
Compressional Sound Speed (Bottom) 1730 m/s 
Density (Water) 1026 kg/m3 

Density (Bottom) 2070 kg/m3 

Surface RMS Roughness 0 m 
Bottom RMS Roughness 0 m 
Shear Sound Speed 0 m/s 
Compressional Absorption 0 dB/m 
Shear Absorption 0 dB/m 

Table 1.   Environmental parameters for modeling and simulation of the underwater 
acoustic communications channel. 

Because Bellhop uses Gaussian beams to model propagation, there is some error 

associated with the estimation of eigenrays.  This error is evident in Figure 11, where the 

eigenrays are clearly not intercepting the receiver exactly.  Because of the high-

frequency, short-wavelength nature of the Seastar signals, this error could significantly 

impact the phases of the received eigenrays, though to what extent is unknown and 

should be examined in follow-on work. 

B. ACOUSTIC SIGNAL-TO-NOISE POWER RATIO 

One of the most important measures for evaluating communications performance 

is the signal-to-noise power ratio (SNR).  Because SNR is often defined inconsistently 

between the technical communications community and the underwater acoustics 

community, we present a definition of the acoustic signal-to-noise power ratio in 

generally accepted acoustic terms.  This particular treatment of SNR is developed more 

extensively in [4].  The acoustic signal-to-noise power ratio SNRa is presented as follows: 

 
( ){ }
( ){ }

2
1

2
1

,
SNR

,

s

a

n

E p t

E p t
≡

r

r
 (2.1) 

where E{•} is the expected value or first moment, and ps(t,r1) and pn(t,r1) are the acoustic 

pressures of the signal and noise, respectively, incident at a receiver located at 
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1 1 1 1
ˆˆ ˆx i y j z k= + +r .  SNRa quantifies the strength of the received signal compared to the 

received noise before processing occurs, and is a useful measurement since it is indicative 

of the communications performance that may be expected. 

1. Signal 

The multi-channel MSFK communication signals used in the Seaweb and Seastar 

underwater networks are composed of a band of frequencies.  Because each frequency 

experiences a varying amount of transmission loss, it is necessary to express the 

numerator in (2.1) in terms of a narrowband frequency component.  Consider a 

stationary, omnidirectional, time-harmonic point source located at 0 0 0 0
ˆˆ ˆx i y j z k= + +r  

transmitting a signal.  The magnitude of the signal’s acoustic pressure incident on the 

receiver located at r1 can be given by: 

 ( ) ( )( )0,1
1 0

0,1

, f r R
s

Rp t P e
r

α− −=r  (2.2) 

 

where P0 is the acoustic pressure amplitude of the signal at the source in micropascals 

(μPa), R is the reference range from the source, r0,1 is the range between the source and 

receiver in meters, and α( f ) is the frequency-dependent attenuation coefficient in nepers 

per meter (Np/m).  Spherical spreading of the propagating wave front is assumed.  It is 

shown in [4] that for a time-harmonic acoustic pressure at time t seconds and at location 

r1, the average power of the signal may be expressed as: 

 ( ){ } ( ) ( )( ) ( )0,1

2
2 2 2 2

1 1 0 , 1
0,1

2, ,
2

f r R
s s rms s

RE p t p t P e p
r

α− −⎛ ⎞
= = =⎜ ⎟⎜ ⎟

⎝ ⎠
r r r  (2.3) 

where prms,s(r1) is the RMS value of the acoustic pressure of the signal at the receiver. 

2. Noise 

Noise in the underwater communications channel originates from a variety of 

sources, with major contributions from shipping, wind, hydrodynamics, seismic activity, 

and biologics [9, 10].  If we treat pn(t,r1) as a zero-mean, wide-sense-stationary, random, 
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Gaussian process that is an arbitrary function of time, it can be shown [4] that the average 

power of the noise incident at the receiver is: 

 ( ){ } ( ) ( )2 2
1 1 1, 2 ,

n nn p pE p t S f fσ= = Δr r r  (2.4) 

where ( )2
1npσ r  is the variance of the noise, ( )1,

npS f r  is the power spectral density 

function in Pa2/Hz, and Δf is a limited noise bandwidth, generally taken to be 1 Hz.  

Substituting (2.3) and (2.4) into (2.1) yields: 

 
( )
( ) ( )

( )( ), 0 ,1

2

02
1 20,1

2
1 1

2
2

SNR
2 ,

rms s

n n

f r R
a

p p

RP
p r

e
S f f

α

σ
− −

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠= =

Δ

r
r r

 (2.5) 

A more useful form of (2.5) is attained by expressing the SNRa in terms of sound 

pressure levels relative to a reference acoustic pressure Pref, resulting in the familiar 

passive sonar equation terms of source level (SL), noise level (NL), and transmission loss 

(TL): 

 ( ) ( )SNR dB SL NL TLa = − +  (2.6) 

where 

 ( ) ( )SNR dB 10log SNRa a=  (2.7) 

 
0

2
2SL 20log   dB re ref

ref

P
P

P

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (2.8) 

 
( )1 2

2

2 ,
NL 10log   dB re np

ref
ref

S f
P

P
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

r
 (2.9) 

 ( ) ( )( )0,1 0,1TL 20log 1   dBr f rα′= + −  (2.10) 

and ( ) ( )8.686f fα α′ = , where ( )fα′  is in dB/m [11].  In (2.8) – (2.10), R = 1 m, Δf = 

1 Hz, and for underwater acoustics, Pref = 1 μPa. 

We next seek to describe acoustically what affects values for source level, noise 

level, and transmission loss in the context of (2.6).  It is worth emphasizing that each of 

the terms in (2.6) is frequency dependent.  Thus, the acoustic SNR given by (2.6), when 

expressed as a function of frequency, can represent effects of the channel on a signal at a  
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certain frequency.  As covered in a subsequent section, it is therefore possible to find the 

optimal transmission frequency for a desired communication range given a set of 

environmental conditions. 

C. WIDEBAND ACOUSTIC LINK BUDGET 

The wideband acoustic link budget is a method by which SNRa may be calculated 

using (2.6) [12].  Each term in (2.6) and its dependence on frequency is discussed in the 

subsequent sections. 

1. Source Level 

The source level of an omnidirectional transmitter may be defined as [11]: 

 @1SL 10log source m

ref

I
I

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
  dB (2.11) 

where Isource@1m is the acoustic intensity of the transmitted signal referenced at one meter 

from the transmitter, and Iref  is a standard reference intensity.  The general equation for 

acoustic intensity is given by: 

 2 W/mI
A
Π

=  (2.12) 

where Π is the acoustic power and A is the surface area surrounding the acoustic center.  

At a radius of one meter, the transmitter is surrounded by a sphere of surface area: 

 24 4A rπ π= =   m2 (2.13) 

Substituting (2.13) into (2.12) for Isource@1m yields: 

 2
@1  W/m

4source mI
π
Π

=  (2.14) 

The standard reference pressure for underwater acoustics is 1 μPa, which is 

equivalent to a reference intensity of 0.67×10-18 W/m2 [11].  Substituting this value and 

(2.14) into (2.11), we obtain: 

 

( )

2

18 2

W m
4SL 10log  dB re 1 Pa @  1 m

0.67 10 W m

10log 170.7 dB re 1 Pa @  1 m

π μ

μ

−

Π⎛ ⎞
⎜ ⎟

= ⎜ ⎟×⎜ ⎟
⎝ ⎠

= Π +

  (2.15) 
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For example, if we assume Π is 1 W, then the source level is simply 170.7 dB re 1 

μPa @ 1 m. 

An important consideration for acoustic communications is the proper selection of 

the source level.  On the one hand, it is important to set the source level high enough so 

that the received energy is higher than the receiver’s detection threshold.  On the other 

hand, if the source level is set too high, the channel reverberation will be very strong, 

prolonging the channel’s impulse response by elevating weak multipath returns above the 

background noise.  Achieving a high SNR—which is desirable for the direct path 

signal—by increasing source level, also makes multipath returns stronger, which can 

degrade receiver performance. 

In addition to selecting a source level, it is necessary to examine how the source 

level changes with frequency.  Building a transducer with a flat frequency response 

across the range of transmission frequencies is very difficult and rarely achieved, so it is 

necessary to measure the frequency response of the transducer being used.  With the 

frequency response known, the modulator can compensate for any deviations from the 

desired response by equalizing the amplitude of the signal at particular frequencies.  

Figure 4 shows the frequency response of the source level of a spherical transducer used 

aboard a prototype Seastar high-frequency acoustic modem. 

 
Figure 4.   Source level frequency response of a high-frequency transducer. From [13] 
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Source level is further dependent on the directionality of the transducer.  Ideally, 

an omnidirectional source radiates acoustic pressure uniformly in all directions.  

However, source levels can vary greatly with direction, as illustrated by Figure 5, which 

shows the axial beam pattern of the same transducer as that measured in Figure 4. 

 
Figure 5.   Axial beam pattern of a high-frequency, omnidirectional transducer 

transmitting at 40 kHz. From [13] 

Another important consideration for source level is the material condition of the 

transducer [14].  All transducers are subject to degradation caused by material and 

electrical stresses and strains incurred during the conversion of electrical energy into or 

from mechanical energy.  Higher source levels induce greater forces that act on the 

transducer and, if overdriven, can shorten its life or permanently damage it. 

2. Transmission Loss 

Transmission loss is a quantitative description of the weakening of an acoustic 

signal between two points.  It is most often expressed as a logarithmic ratio between the 

sound intensity I0 at a point one meter from the acoustic center of the source, and the 

sound intensity I1 at some distant point [11].  Equation (2.16) gives the transmission loss 

in decibels: 
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 0

1

10 log ITL
I

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
  dB (2.16) 

There are a variety of methods by which transmission loss is obtained, some 

resulting from physical theory and others from empirical observation and 

experimentation.  Nevertheless, transmission loss between two points is fundamentally 

dependent on two broad categories of losses: geometric and nongeometric.  Geometric 

losses occur as a result of expansion of the acoustic wave front during propagation.  

Nongeometric losses occur as a result of absorption, scattering, leakage, and other 

factors, and tend to be highly dependent on environmental conditions.   

Because only a rough estimate of transmission loss was desired for this thesis, the 

geometric spreading of the shallow channel was estimated by using simple cylindrical 

spreading.  The transmission loss formula for cylindrical spreading can be derived as 

follows. Between an upper plane located at the surface, at z = 0 m, and a lower plane 

located at the bottom, at a depth of z = H m, energy is conserved and the radiated acoustic 

power, Π, is constant regardless of range r.  When the wave front begins interacting with 

the parallel plane boundaries, it begins to spread cylindrically outward.  Because the 

acoustic power is the product of acoustic intensity and the area of the wave front, and 

since the power remains constant regardless of range, the acoustic power of a 

cylindrically spreading wave front may be written as: 

 0 0 1 12 2r HI r HIπ πΠ = =  (2.17) 

Solving for the intensities yields: 

 0
02

I
r Hπ
Π

=  (2.18) 

 1
12

I
r Hπ
Π

=  (2.19) 

Applying the convention r0 = 1 m , and substituting (2.18) and (2.19) into (2.16), the 

cylindrical transmission loss is: 

 1TL 10logcyl r=   dB (2.20) 
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One of the nongeometric sources of transmission loss is absorption [9, 11].  The 

contribution of absorption to transmission loss is a function of range, among other 

variables: 

 TLabs rα=   dB (2.21) 

There have been several theoretical and empirical attempts to quantify α, which is 

the absorption coefficient at frequency f.  Fisher and Simmons developed one of the most 

well known equations for α [16]; however, Francois and Garrison further refined the 

equation through extensive measurements, so we use their equation to model absorptive 

losses [17, 18]: 

 
2 2

21 1 1 2 2 2
3 32 2 2 2

1 2

 dB/kmA P f f A P f f A P f
f f f f

α = + +
+ +

 (2.22) 

The absorption coefficient has three components: the first two are chemical 

relaxations for boric acid (H3BO3) and magnesium sulfate (MgSO4), respectively, and the 

third is the contribution of pure water.  The degree to which each component contributes 

to the absorption of sound in seawater depends on frequency f, in kHz, temperature T, in 

degrees Celsius, salinity S, in parts per thousand (ppt), acidity, measured by pH, and 

depth D, in meters.  The constants also take into account sound speed as a function of 

temperature, salinity and depth, but for simplification and consistency, the sound speed is 

taken to be 1500 m/s. 
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Figure 6.   The three components of absorption.  For frequencies above 10 kHz,  

MgSO4 is the dominant contributor to absorptive losses. 

The contribution of each component is presented in Figure 6 for frequencies up to 

100 kHz.  Above 10 kHz, MgSO4 is the dominant contributor to absorption, as 

determined by Francois and Garrison.  Thus, in the Seastar operating band of 35-55 kHz, 

the influences of boric acid and pure water on absorption are relatively small.  At 55 kHz, 

the total absorption coefficient is 15.5 dB/km, and the combined effects of boric acid and 

pure water account for less than 1 dB/km of that loss. 

The combination of (2.20) and (2.21) yields the total transmission loss in the 

channel due to cylindrical spreading and absorption: 

 TL TL TLcyl abs= +   dB (2.23) 

Figure 7 illustrates the dependence of the overall transmission loss on range and 

frequency.  At a transmission frequency of 45 kHz, a signal experiences approximately 

32 dB of transmission loss at a range of 500 m.  It is readily apparent that high-frequency 

underwater acoustic communications are limited by transmission loss, and must therefore 

be restricted to short ranges. 



 16

Range (m)

Fr
eq

ue
nc

y 
(k

H
z)

 

 

100 200 300 400 500
0

10

20

30

40

50

60

70

80

90

100

Tr
an

sm
is

si
on

 L
os

s 
(d

B
)

0

5

10

15

20

25

30

35

40

 
Figure 7.   Transmission loss as a function of range and frequency.  Variation along the 

horizontal axis is a function of geometric spreading and absorption, whereas 
variation along the vertical axis is only a function of absorption.  A temperature of 

13°C, pH of 8.0, depth of 100 m, and salinity of 35 ppt are assumed. 

An additional contribution to transmission loss arises from interaction with the 

boundaries of the channel.  Typical boundaries are the surface and the bottom, but may 

also include water layers in extremely stratified environments.  The resulting 

transmission loss from these interactions differs greatly depending on the boundary 

characteristics, grazing angle of the incident acoustic waves, and acoustic frequency.  For 

purposes of channel simulation, the specularly reflecting pressure release model of the 

surface, which we shall call the perfect reflector, is used for simplification.  More 

realistically, however, the sea surface is modulated by a field of gravity waves resulting 

from a variety of air-sea forcing mechanisms, such as wind, and can exhibit a diversity of 

statistical characteristics.  With regard to transmission loss, when an acoustic ray interacts 

with a rough surface, scattering can occur as a result of diffuse reflection.  The degree of 

scattering is dependent on the roughness of the surface and the wavelength of the acoustic 
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wave [9, 19].  For a surface that is flat over a few wavelengths of the sound, the acoustic 

wave is specularly reflected, and its propagation may be modeled readily as an 

unscattered ray.  For a surface whose variations occur on the order of one wavelength of 

the sound, the wave is scattered due to diffuse reflection.  For surface variations smaller 

than one wavelength of the sound, the propagation of the diffuse reflection approaches 

that of a spherical wave as the volume of the surface variation approaches the limit of 

zero [19].  The overall degree of scattering of an acoustic wave may be quantified by the 

Rayleigh parameter [9]: 

 ( )sinR kh θ=  (2.24)  

where k = 2π/λ m-1 is the wave number, H is the surface wave height in meters, and θ is 

the grazing angle of the ray.  For R >> 1, the surface acts as a scatterer, and for R << 1, 

the surface acts as a reflector [9].  Thus, for a given surface roughness, acoustic signals 

with smaller wavelengths, and therefore higher frequencies, are more susceptible to 

scattering as a result of diffuse reflection than lower frequency signals.  Additionally, the 

statistical characteristics of the scattered acoustic signals will be dependent on those of 

the surface.  We neglect scattering in order to simplify the channel model, and because 

the method by which Bellhop accounts for scattering was not investigated. 

Treating the surface as a perfect reflector is justified by the large characteristic 

acoustic impedance mismatch between seawater and air, which happens to be four orders 

of magnitude as seen in Table 2.  However, the characteristic acoustic impedances of 

seawater and a fluid-like bottom, such as quartz sand, are of the same order of magnitude.  

Thus, when sound waves interact with the bottom, in addition to experiencing scattering, 

energy is lost to propagation into the bottom half-space.  This loss of energy is termed 

energy leakage, since the acoustic energy that propagates and is absorbed into the bottom 

medium is ultimately lost from the communication channel.  As a result, every time a ray 

interacts with the bottom, a quantifiable amount of energy is lost and may be modeled as 

transmission loss inherent to that particular ray.  For multipath propagation, each ray has 

a unique amplitude dependent not only on the factors previously discussed, but also on 

the number of surface reflections and bottom bounces it experiences throughout its  
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propagation path.  The Bellhop acoustic model couples acoustic ray tracing with bottom 

bounce transmission loss, yielding an associated amplitude for each ray, making it an 

appropriate tool for multipath propagation analysis. 

Characteristic Acoustic 
Impedance ρ0c (Pa·s/m) 

Air 415 
Water (sea) 1.54×106 
Quartz Sand 3.58×106 

Table 2.   Characteristic impedances are shown for air at 20°C, seawater, and a fluid-
like bottom composed of quartz sand. From [11] 

The channel simulations presented in Chapter V assume a homogeneous layer of 

seawater and a bottom half-space.  It is worth noting that Bellhop can model several 

layers, each with its own unique environmental properties such as density, SSP, and RMS 

boundary roughness.  Thus, in some cases it is possible that energy initially leaked from 

the layer in which transmission is occurring may reflect or refract back into that layer. 

For the SSP and boundary conditions assumed in this thesis, the transmission loss 

values calculated by Bellhop are in close agreement to the greatly simplified transmission 

loss formula presented in this chapter.  This suggests that over the short transmission 

paths investigated, bottom bounce losses were insignificant. 

3. Noise Level 

Noise at the receiver degrades its ability to process the arriving signal.  When 

referring to noise, we specifically consider ambient noise resulting from a variety of 

sources such as biologic activity, seismic events, shipping, hydrodynamic noise, thermal 

noise, and surface noise resulting from surface winds and weather.  During World War II, 

Wenz [20] developed a set of curves based on empirical data to quantify these various 

sources and the noise levels they could be expected to produce.  There have since been 

many efforts to characterize noise in a variety of environments. Following from (2.9), the 

noise level may be expressed as [10]: 
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 NL NSL 10log B= +   dB re 1 μPa2 (2.25) 

where NSL is the noise spectrum level, or the acoustic intensity measured over a spectral 

bandwidth of one hertz, given by [10]: 

 
( )1
2

2 ,
NSL 10log

μPa Hz
npS f⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

r
  dB re 1 μPa2/Hz (2.26) 

Since there are many distinct sources of noise in the ocean, the total NSL at a receiver 

located at r1 is the power sum of the source levels of each contributing noise source.  The 

total NSL may be expressed as: 

 NSL 10NSL 10log 10 i

i

⎛ ⎞= ⎜ ⎟
⎝ ⎠
∑   dB re 1 μPa2/Hz (2.27) 

Coates [10] developed a formula from empirical data that accounts for turbulence, 

shipping, surface agitation and thermal noise.  Figure 8 shows Coates’ values for (2.27) 

with a wind speed of 5 m/s and low shipping density.  For the Seastar operating band of 

35 to 55 kHz, according to [10], it is clear that the primary source of noise is surface 

noise (wind and wave noise). 

 
Figure 8.   Noise spectrum level (NSL) for deep water as formulated by Coates [10].  A 

wind speed of 5 m/s and light shipping density are assumed. 
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It must be noted that Coates’ empirical formula is based on data taken in deep 

water, while Seastar operates in shallow water. Coates also does not consider biologic 

noise like snapping shrimp, whose noise signatures are high amplitude and broadband, 

and can be found in many shallow-water environments [21]. Thus, using Coates’ formula 

to represent the noise level across the frequency spectrum is useful only to the extent that 

it illustrates the sources of noise and relative spectra. To characterize an actual operating 

environment, it is preferable to have noise measurements from that environment, or 

others like it, to properly account for localized shipping density, biologic activity, 

weather patterns, and hydrodynamic turbulence. 

The various sources of noise are known to exhibit certain statistical qualities [10].  

Noise from surface agitation tends to vary slowly compared to other noise sources, since 

the surface retains inertia from the wind, and takes time to fully develop and dissipate.  

Shipping noise in a shallow environment varies relatively quickly, and tends to be 

composed of narrowband frequencies from engine and machinery noise. In coastal 

locations, breaking surf can contribute 10 dB more noise than deep water levels.  Some 

biologics, such as whales and dolphins, produce calls that are quickly varying and 

narrowband in nature, while others, such as beds of snapping shrimp and fish choruses, 

produce slowly varying, broadband noise. Of importance to Seastar is the fact that 

shallow-water ambient noise varies more widely and more rapidly than deep-water 

ambient noise. This is particularly true near ports and shipping lanes, typical of 

environments where Seastar could operate. 

4. Transmission Frequency 

Transmission loss and noise both contribute to the degradation of underwater 

acoustic communications. By combining both of these quantities as expressed in (2.6), 

we are able to identify particular frequencies at which the highest SNRa may be expected, 

thereby enabling us to determine a theoretical optimal operating band for the Seastar 

network [4].  Figure 9 shows TL + NL as a function of range and frequency in a channel 

having a temperature of 13°C, pH of 8.0, depth of 100 m, and salinity of 35 ppt, and 

where a surface wind speed is 5 m/s in an area with low shipping density. The solid black 

box signifies the ranges and frequency band in which Seastar is designed to operate. 
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Figure 9.   Transmission loss and noise level (from Coates) as a function of frequency 

and range. 

Figure 10 shows TL + NL as a function of frequency at a range of 500 m for four 

wind speeds.  As wind speed increases, noise from surface agitation rapidly increases 

across the Seastar operating band, which is denoted by the two dashed lines at 35 and 55 

kHz.  For the Seastar network, wind can be expected to play a significant role in 

communications performance, as the noise varies by decades of decibels for a change in 

wind speed of 15 m/s. 

As discussed in the previous section, the NSL given by Coates’ empirical formula 

are not necessarily representative of the shallow environment in which Seastar is 

designed to operate.  We may nevertheless conclude that wind and sea state play a 

significant role in the performance of Seastar communications, and may indeed be the 

limiting factor for channel performance. 
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Figure 10.   Transmission loss plus noise level (from Coates) as a function of frequency at 

a range of 500 m for four wind speeds. 

D. THE FADING CHANNEL 

The shallow, short-range, high-frequency underwater communication channel 

exhibits fading induced by multipath propagation.  Multipath-induced fading occurs 

because of the presence of two reflecting boundaries: the surface and the bottom.  When a 

ray interacts with one of these boundaries, the signal may encounter a shift in phase, 

frequency and amplitude.  Each ray traverses a unique path, as illustrated by Figure 11, 

leading to unique travel times and boundary interactions for each ray.  Thus, in a 

multipath-induced fading channel, a receiver hears multiple versions of the signal, each 

arriving at a different time, and having different phase, frequency, and amplitude than the 

original transmitted signal.  The statistical characteristics of these multipath arrivals are 

directly dependent on the statistical characteristics of the boundaries with which the rays 

interact.  
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Further characterization of the fading channel can be made by determining 

whether the channel is flat or frequency-selective across the bandwidth of the signal, and 

if it is slow fading or fast fading [22].  For flat fading, the bandwidth of the signal is 

smaller than the coherence bandwidth of the channel, and the signal is attenuated evenly 

across all frequencies.  For frequency-selective fading, the bandwidth of the signal is 

greater than the coherence bandwidth of the channel, and the signal experiences non-

uniform attenuation at different frequencies. Frequency-selective fading is commonly 

modeled using Rayleigh-, Rician-, and Nakagami-distributed attenuation [22].  From our 

previous discussion regarding noise and transmission loss, we know that the underwater 

acoustic communication channel is most definitely frequency-selective.  Thus, signals 

used in the Seastar network can be expected to experience frequency-selective fading. 

 
Figure 11.   The upper plot is a Bellhop ray trace for a fan of 91 Gaussian beams in an iso-

speed sound channel.  The lower plot displays the eigenrays, or those rays that 
intercept a receiver at range r = 500 m. 
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1. Multipath Spread 

The time spread of a signal refers to the spreading out, in time, of the transmitted 

signal as it propagates to the receiver.  A signal can experience time spreading as a result 

of a variety of phenomena, including multipath propagation.  As the multipath rays arrive 

at the receiver, the resulting received signal, when compared to the transmitted version of 

the signal, may appear to have spread in time.  Thus, it may be said that multipath 

propagation lengthens the channel’s impulse response, which in turn causes the received 

signal to spread in time.  The time interval over which these multipath signals arrive at 

the receiver is called the multipath spread of the channel, and is denoted by Tm [22].  The 

multipath spread of the channel can be inversely represented in frequency by the 

coherence bandwidth of the channel, given by [22]: 

 ( ) 1
c

m

f
T

Δ ≈  (2.28) 

If the bandwidth of the transmitted signal is greater than (2.28), the channel is frequency-

selective.  If the bandwidth of the transmitted signal is less than (2.28), the channel is 

frequency-nonselective. 

2. Doppler Spread 

The range of frequencies over which the Doppler power spectrum of the channel 

is nonzero is called the Doppler spread of the channel, and is denoted by Bd [22].  

Doppler spread can be inversely represented in time by the coherence time of the 

channel, given by [22]: 

 ( ) 1
c

d

t
B

Δ ≈  (2.29) 

Longer values for (2.29), and equivalently, smaller values for Bd, correspond to a slow-

fading channel, while smaller values for (2.29) correspond to a fast-fading channel. 

Doppler spread occurs as a result of Doppler shifts caused by motion at the 

source, receiver, and channel boundaries.  Mobile nodes exhibit a Doppler shift 

proportional to their relative velocity, while currents and tides can also force moored 

nodes to move, introducing slight Doppler shifts.  The boundaries can introduce Doppler 
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shifts when rays interact with gravity waves; this is particularly evident at the surface, but 

can also occur in stratified water in which internal waves may be propagating. 

Let us explicitly examine the effect of velocity on frequency using the receiver as 

a reference.  Assuming the speed of the current in the channel is zero, the frequency 

observed at the receiver is given by [23]: 

 r

s

c vf f
c v

⎛ ⎞+′ = ⎜ ⎟+⎝ ⎠
 (2.30) 

where f ′  is the observed frequency at the receiver, c is the speed of sound, vs is the 

radial component of the velocity of the source, vr is the radial component of the velocity 

of the receiver, and f is the transmitted frequency at the source.  Consider, for example, 

the case of a mobile source and a stationary receiver where vr is zero.  Equation (2.30) 

then simplifies to: 

 
s

cf f
c v

⎛ ⎞
′ = ⎜ ⎟+⎝ ⎠

 (2.31) 

where vs is positive if the source is moving away from the receiver, and negative if the 

source is moving towards the receiver.  The frequency observed at the receiver is lower 

than the transmitted frequency if vs is positive, and higher if vs is negative. 

In multipath propagation, a Doppler shift can occur every time a ray interacts with 

a boundary.  Thus, the frequency observed at the receiver is a combination of all the 

various frequency shifts the signal has encountered through its multipath propagation.  

These shifts contribute to the formation of the multipath-induced fading channel.  

Because the Doppler shifts are velocity dependent, the more perturbed the boundaries are, 

for instance due to a large sea state, the greater the Doppler shifts will be.  For stationary 

boundary conditions, reflections do not introduce Doppler shifts. 

Doppler spread is the accumulation of the total effects that motion at the source, 

receiver, and channel boundaries have on the frequency observed at the receiver.  The 

spread refers to the tendency of a transmitted signal’s bandwidth B to spread out in the 

frequency domain as it propagates through the fading channel.  The bandwidth of the  
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signal observed at the receiver may then be B + ΔB , where BΔ  is the additional 

bandwidth the received signal occupies as a result of propagating through a fading 

channel. 

3. Intersymbol Interference 

Intersymbol interference (ISI) is a form of distortion of a signal in which one 

symbol interferes with subsequent symbols.  This is an undesirable phenomenon, as the 

previous symbols have a similar effect as noise, thus making communications less 

reliable.  ISI is usually caused by multipath spread of the inherent nonlinear frequency 

response of a channel, causing successive symbols to “blur” together.  The presence of 

ISI in the system introduces errors in the decision device at the receiver output. 

In Seastar, ISI can be pronounced due to the large multipath spread of the short-

range channel.  Figure 12 shows a long-range source-receiver configuration.  Shown are 

two eigenrays, the direct path and the surface-reflected path.  The time difference of 

arrival between the two rays is depicted pictorially as pulse trains, and we see that, 

compared to the pulse duration T, this multipath spread Tm is relatively small, 

corresponding to relatively small overlap between symbols, and therefore low ISI.  In 

Figure 13, a short-range source-receiver configuration is shown.  In this case, Tm is large 

compared to the pulse duration T, corresponding to relatively large overlap between 

symbols, and therefore more ISI.  If T is shortened, the overlap becomes even greater.  

These relationships are examined further in Chapter V. 
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Figure 12.   Direct-path and surface-reflected path pulse trains for a long-range source-

receiver geometry. 

 
Figure 13.   Direct-path and surface-reflected path pulse trains for a short-range source-

receiver geometry. 
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III. MULTI-CHANNEL M-ARY FREQUENCY-SHIFT KEYING 

Both Seastar and Seaweb modems use a modulation scheme commonly referred 

to as multi-channel MFSK.  However, this title is not entirely descriptive of how the 

modulation scheme actually works [3, 24].  We now present a mathematical 

representation of the multi-channel MFSK modulation scheme. 

A. MODULATION 

Before representing multi-channel MFSK mathematically, it is useful and 

necessary to define pure MFSK.  In MFSK [25-27], M frequencies, each offset from a 

center frequency, are used to transmit M unique channel symbols; each symbol therefore 

corresponds to its own unique frequency. 

Traditionally, the total number of channel symbols, and therefore frequencies, is 

determined by how many bits per symbol are used.  However, in Seastar, due to signaling 

techniques applied before modulation, such as convolution coding and interleaving, it is 

more accurate to replace our use of the word “bits” with “encoded symbols.”  This 

releases us from confusing bits that are truly fed into the communication system before 

coding and interleaving with bits that form channel symbols within the demodulator.  The 

number of possible channel symbols, and therefore frequencies, is thus determined by 

how many encoded symbols are used for each channel symbol. 

In Seastar, there are two encoded symbols per channel symbol used.  The number 

of unique channel symbols M is given by 2 bnM = , where nb is the number of encoded 

symbols per channel symbol.  Seastar uses an M = 4 alphabet, so that there are four 

unique channel symbols, transmitted with four unique frequencies.  This configuration is 

referred to as 1-in-4 FSK, or 4-ary FSK, because only one of a possible four unique 

transmission frequencies is actively transmitting at any instant [3, 24].  In the time 

domain, the MFSK waveform may be represented as a pulse train, and is given by [4]: 

 ( ) ( )
1

N

n n
n

x t x t t
=

= −∑ ,  0 dt T≤ ≤  (3.1) 
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where the nth pulse, corresponding to one of the M symbols, is: 

 ( ) [ ]( ) 0.5cos 2 rectn c n n
t Tx t A f f t

T
π ε −⎛ ⎞= + Δ + ⎜ ⎟

⎝ ⎠
 (3.2) 

where 

N: Number of pulses (channel symbols) transmitted in the time interval 

0 dt T≤ ≤  

tn: Time instant when the nth pulse begins (seconds) 

Td: Duration of the transmitted pulse train (seconds) 

A: Amplitude 

fc: Carrier frequency (hertz) 

Δfn: Frequency offset of the nth pulse (hertz) 

εn: Introduced phase shift of the nth pulse (radians) 

T: Pulse duration, or symbol duration (seconds) 

 
1,   00.5rect
0,   otherwise

t Tt T
T

≤ ≤⎧−⎛ ⎞ = ⎨⎜ ⎟
⎝ ⎠ ⎩

 (3.3) 

The total signal duration can subsequently be expressed as NT seconds.  The 

phase shift εn is included in (3.2) and subsequent representations because unintentional 

phase shifts are often introduced during communication. 

The frequency offset Δfn is given by: 

 
2

n
n

kf
T

Δ =  (3.4) 

where kn is an integer that determines the frequency offset of the nth pulse.  In order to 

accurately represent the Seastar modulation scheme, it is necessary that we adopt 

( ){ }1, 3,..., 1nk M∈ ± ± ± − .  This particular set of kn ensures that the spectral spacing 

between each unique frequency is equal to 1/T and that the individual pulses are 

orthogonal, even with phase shift εn.  The condition of orthogonality can be illustrated 

with the following relationship [4]: 
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= =∫ ,  , 1, 2,...,m n M=  (3.5) 

where ,m nδ  is the Kronecker delta and 
mxE  is the energy contained in symbol m, given by: 

 ( ) ( ) ( ) 2 21,
2mx m m mE x t x t x t dt A T

∞

−∞

= = =∫ ,  1, 2,...,m M=  (3.6) 

From the MFSK pulse train representation in the time domain, we obtain the 

Fourier transform of (3.1): 
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The MFSK waveform in the frequency domain is thus a summation of sinc 

functions whose peaks occur along the positive frequency axis at c nf f f= + Δ , and 

whose zero crossings occur every 1/T from f [4].  As illustrated in Figure 14, the 

occurrence of a particular sinc function’s peak at the zero crossings of the other sinc 

functions, along with the exact overlapping of the functions’ zero crossings, is consistent 

with the condition of orthogonality. 

A generally accepted approach to estimating a signal’s bandwidth is to extend the 

bandwidth out to the limit where the magnitude of the spectrum is an order of magnitude 

lower than its maximum value.  For instance, the unit-amplitude sinc function’s 

bandwidth might be defined as the frequency interval between where ( )sinc 0.1f T ≥  for 

3 /f T> , or where the power is 20 dB down from the maximum power.  Thus, a pulse’s 

bandwidth—which is altogether a different quantity from the frequency offset—might be 

defined as: 

 3 3 6
mBW

T T T
⎛ ⎞= − − =⎜ ⎟
⎝ ⎠

 (3.8) 

Due to the specified condition of orthogonality, and the fact that most of the 

energy contained in the signal is located between the first zero crossings, 1/T serves as a 
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useful frequency offset in modulation and frequency bin width in demodulation, but is 

not necessarily an accurate representation of the signal’s true bandwidth. 

 
Figure 14.   Normalized power spectra for four orthogonally spaced sinc functions.  The 

spacing between any two functions’ peaks is 1/T, so that peaks are centered at the 
other functions’ zero crossings. 

Now that pure MFSK has been discussed, it is possible to mathematically define 

the multi-channel MFSK waveform used aboard the Seastar modems.  By multi-channel 

MFSK, we mean to transmit several MFSK pulse trains, or channels, by using frequency-

division multiplexing (FDM).  Signals that are transmitted using FDM are fed into a 

modulator that simply sums the signals [28].  Each signal has its own, unique carrier 

frequency known as a subcarrier frequency.  In FDM, the input signals may be modulated 

using any variety of schemes, including amplitude modulation, phase modulation, 

frequency modulation, and any of the digital modulation techniques that exist.  For 

Seaweb and Seastar, MFSK has been chosen because it has proven to be a robust and 

reliable waveform in underwater data transmission [5]. 
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Multi-channel MFSK allows us to transmit I channels of MFSK pulse trains 

simultaneously.  The scheme thus permits data to be transmitted in parallel, allowing for 

data rates that are higher than a single MFSK pulse train by a factor of I.  In the case of 

Seastar, I = 32 channels (32 pulse trains), and the entire waveform is spread across 5120 

Hz of bandwidth [3, 24].  At any particular time during transmission, there are 

subsequently 32 channels of 4-ary FSK pulse trains, where each subpulse of a particular 

pulse train has one of four possible frequencies corresponding to one of the four unique 

channel symbols. 

Combining the mathematical representations of MFSK and FDM, we develop a 

general and analytical representation for multi-channel MFSK: 

 ( ) ( ),
1 1

I N

n i n
i n

x t x t t
= =

= −∑∑ ,  0 dt T≤ ≤  (3.9) 

 

where the nth pulse of the ith channel is given by: 

 ( ) ( ), , , ,
0.5cos 2 rectn i i c i n i n i

t Tx t A f f t
T

π ε −⎛ ⎞⎡ ⎤= + Δ + ⎜ ⎟⎣ ⎦ ⎝ ⎠
 (3.10) 

where 

I: Number of “channels,” or MFSK pulse trains 

N: Number of pulses (channel symbols) transmitted in the time interval 

0 dt T≤ ≤  

tn: Time instant when the nth pulse begins (seconds) 

Td: Duration of the transmitted pulse train (seconds) 

Ai: Amplitude of the ith channel 

fc,i: Subcarrier frequency of the ith channel (hertz) 

Δfn,i: Frequency offset of the nth pulse of the ith channel (hertz) 

εn,i: Introduced phase shift of the nth pulse of the ith channel (radians) 

T: Pulse duration, or symbol duration (seconds) 
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0,   otherwise
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 (3.3) 

 

The frequency offset Δfn,i is given by: 
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where ( ){ }, 1, 3,..., 1n ik M∈ ± ± ± − .  The subcarrier frequency may be expressed as: 

 ,c i c if f f= +  (3.12) 

where 
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where fc is the carrier frequency of the entire multi-channel MFSK signal, fi determines 

the frequency spacing of the ith channel, and ( ){ }1, 3,..., 1ia I∈ ± ± ± − . 

We obtain the frequency spectrum of the multi-channel MFSK signal by taking 

the Fourier transform of (3.9): 
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 (3.14) 

The frequency spectrum of (3.9) given by (3.14) is pictured in Figure 15, where the 

power spectral density is given by: 

 ( ) ( ) ( ) ( ) 2
S f X f X f X f∗= =  (3.15) 
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Figure 15.   Frequency spectrum of the multi-channel MFSK waveform centered at 45 

kHz, T = 25 ms.  Shown are 32 channels (pulse trains) of 4-ary FSK. 

The construction of the multi-channel MFSK signal can be accomplished 

practically by heterodyning the MFSK pulse train given by (3.1) with a time-harmonic 

signal of frequency fi.  This form of modulation is shown in Figure 16, where xi(t) has a 

carrier frequency of fc, and the resulting subcarrier frequencies of x(t) are given by (3.12). 
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Figure 16.   Frequency-division multiplexing of the MFSK channels (pulse trains) 

produces the multi-channel MFSK waveform x(t). 

In multi-channel MFSK, each subcarrier frequency is orthogonally spaced, which 

makes it similar to orthogonal frequency-division multiplexing (OFDM).  However, 

though the subcarriers are orthogonal to each other, we restrict ourselves from calling it 

OFDM, since OFDM does not encode symbols using different frequencies.  In multi-

channel MFSK, demodulation does not require phase information to be preserved, since 

symbols are represented in the frequency domain only.  With OFDM, symbols can be 

represented by amplitude, phase, or both, making the modulation scheme vulnerable to 

phase shifts and amplitude attenuation.  Furthermore, the encoding of symbols using 

phase introduces an additional layer of demodulation and processing that acts as a sink in 

the very limited power supply of a remote acoustic communication node. 

Figure 17 shows a spectrogram of the multi-channel MSFK waveform used in 

Seaweb.  The signal has a pulse duration of 25 ms, and a bandwidth of 5120 Hz.  In this 

particular figure, each pulse is repeated once.  We can see that at any one instant, only 32 

tones are transmitted.  When the next pulse arrives, a different set of 32 tones are 

transmitted. 
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Figure 17.   Spectrogram of the multi-channel MFSK signal used in Seaweb.  The abscissa 

is time, and the ordinate is frequency. 

B. IMPLEMENTATION 

1. Bandwidth Scaling 

Bandwidth scaling is based on the time-frequency scaling property of Fourier 

analysis, and is currently in use aboard Seastar modems.  Implementing bandwidth 

scaling simply requires introducing a scaling factor s into (3.1).  The resulting bandwidth-

scaled signal is: 

 ( ) ( ),
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I N

n i n
i n

x st x st t
= =

= −∑∑ ,  0 dTt
s

≤ ≤  (3.16) 

where the nth pulse of the ith channel is given by: 
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From (3.16), we observe that in addition to time scaling (3.17) by a factor of s, we can 

include tn in the argument for xn,i(st), which gives: 
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We obtain the frequency spectrum of the bandwidth-scaled multi-channel MFSK 

signal by taking the Fourier transform of (3.16): 
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The frequency spectrum of (3.16) given by (3.22) is pictured in Figure 18, where the 

power spectral density is given by (3.15). 

 
Figure 18.   Frequency spectrum of the bandwidth-scaled multi-channel MFSK waveform 

centered at 45 kHz, T = 12.5 ms.  Shown are 32 channels of 4-ary FSK. 
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In implementing multi-channel MFSK by bandwidth scaling, s is chosen to be 

greater than unity, so that the signal becomes shortened in the time domain and stretched 

in the frequency domain. 

Provided that sufficient bandwidth is available, bandwidth scaling is a useful and 

practical way to increase the data rate.  With 1s > , bandwidth scaling is further 

advantageous in that it becomes less vulnerable to Doppler spread, since the bandwidth of 

the individual subpulses and the frequency bins are stretched by a factor of s.  The values 

of the Doppler shifts experienced by a particular path consequently become smaller 

relative to 1/T.  However, for 1s > , the signal is more susceptible to ISI due to the 

shortening of the pulse duration T.  In the short-range, high-frequency underwater 

acoustic communication channel, where a signal is continuously transmitted, it is shown 

in Chapter V that a shortened pulse duration T increases the time difference of arrival 

between the direct path and the next multipath arrivals of a signal, and ultimately 

increases the multipath spread of the received signal. 

2. Frequency Multiplexing 

In this thesis, the term frequency multiplexing as it pertains to multi-channel 

MFSK refers to the transmission of the original 5 kHz format across additional bands.  

This modulation technique adds an additional tier of the FDM pictured in Figure 16.  The 

frequency-multiplexed multi-channel MFSK signal may be represented in the time 

domain by: 

 ( ) ( ), ,
1 1 1

J I N

n i j n
j i n

x t x t t
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where the nth pulse of the ith channel in the jth band is given by: 
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where 

J: Number of bands of multi-channel MFSK 

I: Number of “channels,” or MFSK pulse trains 
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N: Number of pulses (channel symbols) transmitted in the time interval 

0 dt T≤ ≤  

tn: Time instant when the nth pulse begins (seconds) 

Td: Duration of the transmitted signal (seconds) 

Ai,j: Amplitude of the ith channel in the jth band 

fc,i,j: Subcarrier frequency of the ith channel in the jth band (hertz) 

Δfn,i,j: Frequency offset of the nth pulse of the ith channel in the jth band (hertz) 

εn,i,j: Introduced phase shift of the nth pulse of the ith channel in the jth band 

(radians) 

T: Pulse duration, or symbol duration (seconds) 
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The frequency offset Δfn,i,j is given by: 
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where ( ){ }, , 1, 3,..., 1n i jk M∈ ± ± ± − .  The subcarrier frequency may be expressed as: 

 , , ,c i j c i jf f f= +  (3.26) 
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where fc is the carrier frequency of the entire frequency-multiplexed multi-channel MFSK 

signal, ,i jf  determines the frequency spacing of the ith channel in the jth band, 

( ){ }1, 3,..., 1ia I∈ ± ± ± − , and ( ){ }1, 3,..., 1jb J∈ ± ± ± − . 

We obtain the frequency spectrum of the frequency-multiplexed multi-channel 

MFSK signal by taking the Fourier transform of (3.23): 
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The frequency spectrum of (3.23) given by (3.28) is pictured in Figure 19, where the 

power spectral density is given by (3.15). 

 
Figure 19.   Frequency spectrum of the frequency-multiplexed multi-channel MFSK 

waveform centered at 45 kHz, T = 25 ms.  Shown are 4 bands of 32 channels of 4-
ary FSK. 

Frequency multiplexing allows for higher data rates to be achieved without 

shortening the pulse duration T.  Maintaining a longer pulse duration protects against ISI 

in the short-range, high-frequency underwater communication channel, and makes the 

signal more immune to multipath spread.  However, a significant drawback lies in the 

fact that there is less tolerance for Doppler spread compared to a bandwidth-scaled multi-

channel MFSK signal, since the values of the Doppler shifts experienced by a particular 

path consequently become larger relative to 1/T. 
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IV. DEMODULATION 

Demodulation is accomplished by examining the frequency content of the multi-

channel MFSK signal with the use of the discrete Fourier transform (DFT), computed by 

the FFT algorithm, over each pulse duration T.  At the receiver, a band-pass filter can be 

applied across the known operating band of the signal, so that only frequencies at which 

we expect information are processed.  The received signal is then basebanded through 

heterodyning, and the multi-channel MFSK spectrum is divided into frequency bins that 

are 1/T Hz wide.  With an appropriately sized FFT, each bin potentially contains one 

tonal.  If there are 32 channels, or pulse trains, of 4-ary FSK being transmitted, as in the 

case of Seastar, then 32 of a possible 128 bins would contain energy from a subpulse.  

The 128 bins are subsequently divided into 32 groups of four, where each of the four bins 

corresponds to one of the unique channel symbols determined by the M = 4 alphabet.  

Comparative decision logic is then applied such that the bin containing the greatest 

amount of energy determines what channel symbol is being received.  This approach is 

implemented in the simulations presented in Chapter V, but for a single channel of 4-ary 

FSK instead of the entire multi-channel MFSK signal. 

For the demodulation of the frequency-multiplexed implementation of multi-

channel MFSK, a band-pass filter can be applied to isolate the J bands of multi-channel 

MFSK, and the same FFT demodulation process repeated for each of these bands. 

A useful metric in analyzing the performance characteristics of a particular digital 

modulation scheme is the encoded SER.  The encoded SER is determined by dividing the 

number of encoded symbol errors in the received signal by the total number of encoded 

symbols transmitted over the duration of the signal.  Encoded symbol errors can result 

during the demodulation of a signal that is distorted by noise or interference.  The 

encoded SER is used to measure modulation scheme performance in the simulations 

presented in Chapter V. 
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Similar to SER is the bit error rate (BER), which is the number of bits received n 

error divided by the total number of transmitted bits.  For BER analysis, noise is 

quantified by the energy per encoded symbol to noise power spectral density ratio, given 

by: 

 0bE N  (4.4) 

To achieve accurate values for both the SER and the BER, a large number of 

encoded symbols and bits must be transmitted through a noisy channel, often on the order 

of 106 or greater.  The requirement for a large amount of symbols transmitted is 

especially pertinent for channels with higher values for Eb/N0, where relatively low noise 

levels will cause few errors.  A theoretical curve for BER is illustrated in Figure 20 for 4-

ary FSK with no forward error correction (FEC) coding in a channel with added white 

Gaussian noise [22]. 

 
Figure 20.   Theoretical BER for 4-ary FSK with no FEC in a channel with added white 

Gaussian noise [22]. 
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V. SIMULATIONS 

In order to characterize the performance of bandwidth scaling and frequency 

multiplexing in various source-receiver geometries, we simulate the modulation, 

transmission, reception and demodulation of a signal through a multipath-induced fading 

channel.  To illustrate these characteristics, and for computational efficiency, several 

simplifications and assumptions are made.  The aim of these assumptions is to create a 

frequency-independent channel model and examine what happens to performance in the 

narrowband in response to the effects of the fading channel, source-receiver geometry, 

and pulse duration. 

The simulated signal consists of only one pulse train of 4-ary FSK centered at 45 

kHz, rather than the entire bandwidth-scaled or frequency-multiplexed multi-channel 

MFSK signal.  Faithfully representing a broadband signal such as multi-channel MFSK 

would involve taking into account frequency-dependent effects on transmission loss.  As 

discussed in Chapter II, due to the wideband distortion introduced by the ocean, these 

effects vary by tens of decibels from one edge of the signal’s bandwidth to the other, and 

would thus present a significant degree of complexity to the model.  Furthermore, the 

relative effects of the fading channel, source-receiver geometry, and pulse duration on the 

performance of the modulation schemes can still be illustrated with a single pulse train of 

4-ary FSK. 

We next make the assumption that the frequency-dependent transmission loss is 

constant across the bandwidth of the 4-ary FSK pulse train.  At its narrowest for Seastar, 

the bandwidth of a single 4-ary FSK pulse train is 160 Hz, and at its widest, as in the case 

of bandwidth scaling, the bandwidth is 640 Hz.  To show that the difference in 

transmission loss across these bandwidths is negligible, we treat the widest band possible, 

and accept the greatest variation in transmission loss with frequency.  The difference 

between the uppermost and lowermost carrier frequencies in the 4-ary FSK pulse train is 

480 Hz for bandwidth scaling.  For comparison, we determine the transmission loss at the 

extremities of this 480 Hz band.  As an added verification of the assumption of constant 

transmission loss, we perform this comparison for bands centered at 35.080 kHz and 
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54.920 kHz.  The results, determined by both the Bellhop model and (2.27), are presented 

in Table 3, and indicate that the change in transmission loss with frequency is negligible 

for a single pulse train of 4-ary FSK for the case of the widest possible bandwidth.  It 

follows that the transmission loss may be considered constant with frequency for 

narrower bandwidths. 

 
 

TL (Bellhop) TL (Francois & Garrison, 
Cylindrical Spreading) 

Frequency (Hz) Loss (dB) Difference (dB) Loss (dB) Difference (dB)
34840 29.5151 30.3861 
35320 29.5683 

0.0531 
30.4722 

0.0861 

54680 31.6289 34.5552 
55160 31.6756 

0.0467 
34.6684 

0.1132 

Table 3.   Transmission loss at the uppermost and lowermost carrier frequencies for 
a 4-ary FSK pulse train of bandwidth 640 Hz. 

From the environmental parameters defined in Table 1, the RMS roughness of the 

surface is zero.  We further assume that the source and receiver are stationary, allowing 

us to neglect Doppler spreading of the signal.  No additional phase shifts are introduced 

beyond those introduced by the rays’ interactions with the boundaries, and the frequency 

response of the transmitter and receiver are assumed to be flat. 

A. BANDWIDTH SCALING 

In this section, we consider two pulse durations—6.25 ms and 12.5 ms—that are 

associated with the bandwidth scaling implementation of multi-channel MFSK.  Channel 

simulations are run for each of these pulse durations for source-receiver depths of 5 m, 50 

m, 100 m, 150 m and 200 m, over ranges between 50 and 500 m.  For both pulse 

durations, a small number of errors are observed only in the case where the source-

receiver depth was 5 m, and only between ranges of 50 and 60 m.  These results are 

shown in Figure 21.  Thus, for this particular shallow source-receiver geometry and 

noise-free environment, ISI due to multipath spread appears to be an issue at short ranges.   
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Errors are not observed for the other four source-receiver depths, and no errors are 

observed in any of the depth configurations beyond a range of 60 m.  Results from all 

simulations are presented in Appendix A. 

 
Figure 21.   The percentage of encoded symbols received in error are shown for the pulse 

durations associated with bandwidth scaling at a source-receiver depth of z = 5 m 
and for ranges between 50 and 70 m. 

While errors are observed only in limited simulated cases, it is possible to predict 

the presence of ISI based on the times of arrivals of the multipath arrivals.  By measuring 

the time, in symbols, between the start of the direct-path arrival and the start of the next 

multipath, we obtain a normalized time difference of arrival between these two paths.  

This normalized time difference of arrival is, in a sense, a measure of the “distance” in 

time between two symbols.  We consider only these multipath arrivals for this 

comparison, as their amplitudes are the greatest of the multipath arrivals.  The normalized 

time difference of arrival is given by: 

 1 0
N

t tt
T
−

Δ =  (5.1) 
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where t0 and t1 are the arrival times, in seconds, of the direct path and the next multipath 

arrivals, respectively, and T is the pulse duration, in seconds per pulse.  Thus, (5.1) 

describes how many pulses away in time the next multipath arrival is from the direct path 

arrival.  For ΔtN < 1, the direct-path pulse and next multipath pulse overlap, and for 

ΔtN > 1, the multipath symbol is interfering with a subsequent pulse other than the first. 

As an example, in the case where ΔtN = 1, the next multipath pulse begins just as the 

direct-path pulse ends, and is consequently interfering with the second pulse.  Greater 

values for ΔtN thus correspond to an increased potential severity of ISI.  It is important to 

emphasize that ΔtN is useful in evaluating the potential ISI, since its value does not take 

into account phase shifts; in essence, it is a metric of a worst-case scenario. 

Figures 22 and 23 show the results of plotting (5.1) as a function of range for the 

five source-receiver depths and for each pulse duration.  Plotted with (5.1) is a threshold 

that is meant to represent an arbitrary tolerance for a demodulator, and is for illustrative 

purposes only.  The threshold is set for 0.75 symbols, but in reality, the practical 

threshold would depend on the characteristics of the receiver and its ability to demodulate 

the signal at that threshold.  In Figure 22, ΔtN remains above the ISI tolerance threshold 

of 0.75 symbols for all source-receiver depths except for z = 5 m and z = 200 m, where 

the transmitter is only five meters away from the surface and bottom, respectively.  Thus, 

in terms of time difference of arrival, bandwidth scaling with a 6.25 ms pulse duration 

would make the signal susceptible to ISI at all ranges for source-receiver geometries 

located at depths of 50 m, 100 m and 150 m. 
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Figure 22.   Normalized time difference of arrival between the direct path and next 

multipath arrivals for a signal with a pulse duration of 6.25 ms. 

In Figure 23, ΔtN remains above the threshold at all ranges for a source-receiver 

depth of z = 100 m.  For z = 50 m and z = 150 m, ΔtN remains above the threshold at 

ranges between 50 and 350 m and 50 and 425 m, respectively.  Thus, in terms of time 

difference of arrival, frequency multiplexing with a 12.5 ms pulse duration is susceptible 

to ISI at these ranges.  For z = 5 m and z = 200 m, ΔtN is below the threshold for all 

ranges, and is not susceptible to ISI. 

For both pulse durations, the normalized time difference of arrival ΔtN is highest 

at 50 m and lowest at 500 m.  Furthermore, the pulse duration is inversely related to ΔtN: 

shortening the pulse duration increases ΔtN, and vice versa.  We conclude that ISI is more 

likely to occur at shorter ranges than at longer ranges, and for shorter pulse durations than 

for longer pulse durations. 
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Figure 23.   Normalized time difference of arrival between the direct path and next 

multipath arrivals for a signal with a pulse duration of 12.5 ms. 

According to Figures 22 and 23 and the small values for ΔtN across all ranges for z 

= 5 m and z = 200 m, we should not expect ISI to occur, since for these source-receiver 

depths, the next multipath arrival is nearly synchronous with the direct-path arrival.  

However, this expectation directly contradicts the results presented in Figure 21, where 

errors did occur only at a source-receiver depth of 5 m.  Upon closer examination of these 

signals’ characteristics, we find that the amplitude of the next multipath signal is almost 

as strong as the direct-path signal.  Figure 24 shows that the difference in sound pressure 

level (SPL) between the direct path and next multipath signal is extremely small for z = 5 

m and z = 200 m, and much larger for the other source-receiver depths.  Thus, despite ΔtN 

having the smallest values for z = 5 m and z = 200 m, the SPL of the next multipath 

arrival for these source-receiver depths is also the greatest, and is significant enough to 

cause ISI. 
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Figure 24.   Difference in SPL between the direct-path signal and the next multipath. 

B. FREQUENCY MULTIPLEXING 

In this section, we consider durations of 25 ms and 50 ms for pulses associated 

with the frequency-multiplexing implementation of multi-channel MFSK.  Like the 

bandwidth scaling simulations, channel simulations are performed for each of these pulse 

durations for source-receiver depths of 5 m, 50 m, 100 m, 150 m and 200 m, at ranges 

between 50 and 500 m.  For both pulse durations, fewer errors than the bandwidth scaling 

simulations are observed in the case where the source-receiver depth was 5 m.  These 

results are shown in Figure 25.  Thus, for this particular shallow source-receiver 

geometry and noise-free environment, ISI due to multipath propagation is still a factor at 

short ranges, but to a lesser degree.  Errors are not observed for the other four source-

receiver depths, and errors are not observed in any of the depth configurations beyond a 

range of 60 m.  Results from all simulations are presented in Appendix A. 



 52

 
Figure 25.   The percentage of encoded symbols received in error are shown for the pulse 

durations associated with frequency multiplexing at a source-receiver depth of z = 
5 m and for ranges between 50 and 70 m. 

Figures 26 and 27 show the results of plotting (5.1), as it was plotted in Figures 22 

and 23, but with the frequency-multiplexing pulse durations instead.  Plotted with (5.1) is 

the same threshold of 0.75 symbols.  In Figure 26, ΔtN remains above the threshold at all 

ranges for a source-receiver depth of z = 100 m.  For z = 50 m and z = 150 m, ΔtN remains 

above the threshold at ranges between 50 and 164 m and 50 and 201 m, respectively.  

Thus, in terms of time difference of arrival, frequency multiplexing with a 25 ms pulse 

duration renders the signal susceptible to ISI at these ranges.  For z = 5 m and z = 200 m, 

ΔtN is below the threshold for all ranges, and the signal is not vulnerable to ISI. 
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Figure 26.   Normalized time difference of arrival between the direct-path and next 

multipath arrivals for a signal with a pulse duration of 25 ms. 

In Figure 27, ΔtN falls below the threshold for a source-receiver depth of z = 100 

m at a range of 327 m.  For z = 50 m and z = 150 m, ΔtN is almost completely below the 

threshold, but is above the threshold at ranges between 50 and 61 m and 50 and 80 m, 

respectively.  Thus, in terms of time difference of arrival, frequency multiplexing with a 

25 ms pulse duration is susceptible to ISI at these ranges.  For z = 5 m and z = 200 m, ΔtN 

is below the threshold for all ranges, and the signal is not vulnerable to ISI. 

For both pulse durations, the normalized time difference of arrival ΔtN is highest 

at 50 m and lowest at 500 m, as was the case for the bandwidth scaling pulse durations.  

The same inverse relationship between pulse duration and ΔtN holds, as well, meaning 

that ISI is also more likely to occur at shorter ranges than at longer ranges, and for shorter 

pulse durations than for longer pulse durations. 
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Figure 27.   Normalized time difference of arrival between the direct-path and next 

multipath arrivals for a signal with a pulse duration of 50 ms. 

As with the bandwidth scaling simulations, errors occurred during simulations at 

short-ranges for z = 5 m.  Once again, the primary contribution to these errors is the small 

difference in sound pressure level between the direct path and next multipath, shown in 

Figure 24.  Despite ΔtN having the smallest values for z = 5 m and z = 200 m, the SPL of 

the next multipath arrival for these source-receiver depths is similar to that of the direct 

path, and is significant enough to cause ISI. 

A comparison between simulations for the four pulse durations is given in Figure 

28 and Table 4.  This comparison shows that longer pulse durations produce fewer errors 

during demodulation, which confirms the prediction that was made by examining time 

differences of arrival (Figures 22, 23, 26 and 27) that smaller values for ΔtN lead to less 

ISI.  Indeed, as illustrated by these figures, one way to decrease ΔtN is to increase the 

pulse duration. 
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Figure 28.   The percentage of encoded symbols received in error are shown for all four 

pulse durations at a source-receiver depth of z = 5 m and for ranges between 50 
and 70 m. 

Pulse Duration (ms) Total Errors 
6.25 12 
12.5 11 
25 6 
50 2 

Table 4.   Total of encoded symbols received in error for each pulse duration at a 
source-receiver depth of z = 5 m and for ranges between 50 and 70 m. 
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VI. CONCLUSIONS 

A. FINDINGS 

The simulations reported in Chapter V give insight into the relative performance 

of candidate implementations of multi-channel MFSK.  While these results are too 

preliminary to be used for final design decisions, some general trends are evident that 

should inform the implementation of multi-channel MFSK. 

Simulations in a noise-free environment yielded few errors for all pulse durations 

and geometries.  However, lengthening the pulse duration decreases the time difference 

of arrival between the direct-path and next multipath arrivals, and reduces the potential 

for ISI.  Furthermore, because the time difference of arrival decreases as range increases, 

the potential for ISI also decreases with greater distance between source and receiver. 

The demonstrated relationship between pulse duration and time difference of 

arrival gives support to the frequency multiplexing implementation of multi-channel 

MFSK over the bandwidth scaling implementation.  Consider a frequency-multiplexed 

implementation with four bands of multi-channel MFSK having a pulse duration of 50 

ms.  This implementation would have the same data rate as a bandwidth-scaled multi-

channel MFSK signal with a pulse duration of 12.5 ms.  The frequency multiplexing 

implementation is the preferable implementation, as it offers the same improved data rate 

of a bandwidth-scaled signal, but with the added benefit of having a longer pulse 

duration, thus making it more immune to multipath spread and less susceptible to ISI. 

Apart from ISI, due to the high acoustic frequencies at which all the candidate 

implementations would operate, the single greatest cause of signal degradation is 

frequency and range dependent transmission loss and the presence of noise in the 

channel.  As discussed in Chapter II, the idea of a high-frequency acoustic network must 

be limited to short-range applications, since, in a noisy environment, the power of the 

received signal may be overwhelmed by the power of the noise.  The most challenging 

obstacle to short-range, high-frequency underwater acoustic communications is 

overcoming the effects of transmission loss and noise on the wideband signal. 
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B. RECOMMENDATIONS FOR FUTURE WORK 

Based on the simulation results, we recommend that steps be taken to implement 

on Seastar modems the frequency-multiplexed version of multi-channel MFSK.  While 

this implementation will require more processing during demodulation than the 

bandwidth-scaled multi-channel MFSK signal, the penalty paid is small compared to the 

deleterious effects of ISI. 

Evaluation of the candidate implementations of multi-channel MFSK would be 

improved through modeling the wideband multi-channel versions of the signals, rather 

than just a single pulse train of MFSK.  While the single pulse train is useful for 

illustrative purposes and can give us insight as to what may be expected to happen to the 

wideband multi-channel MFSK signal, an accurate characterization of the channel’s 

effects on the signal cannot be obtained until the full signal is propagated through a 

realistic channel model.  Such a model would ideally be frequency-dependent, phase-

coherent, and representative of the statistical characteristics of the channel boundaries at 

the surface and bottom. 

The design of the demodulator may also be improved by implementing spectral 

equalization to help offset the frequency dependent effects of the channel.  One way to 

implement such an equalizer would be to transmit a known wideband signal, analyze its 

received frequency spectrum to determine the effects of the channel on the signal, and 

adjust the amplitude weights of the FFT demodulator accordingly.  Such a signal—a 

probe signal—could be transmitted before initiating the actual communications. 

In addition to more accurately modeling the wideband implementations of multi-

channel MFSK, the incorporation of FEC coding and interleaving to combat ISI would be 

realistic, as coding is routinely used aboard Seaweb modems [3].  Simulations using such 

coding would be more representative of what could be expected in actual testing and 

experimentation. 

Beyond modeling, the various candidate implementations of multi-channel MFSK 

should be tested in the laboratory, and eventually at sea.  Such testing reveals what is 

actually occurring to the signal as it propagates through the underwater acoustic 

communication channel. 
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APPENDIX A. 4-ARY FSK SIMULATION RESULTS 

 
Figure 29.   The input SNRa and percentage of encoded symbols in error between 50 and 

500 m for a signal with T = 6.25 ms and a source and receiver located at z = 5 m. 

 
Figure 30.   The input SNRa and percentage of encoded symbols in error between 50 and 

500 m for a signal with T = 6.25 ms and a source and receiver located at z = 50 m. 
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Figure 31.   The input SNRa and percentage of encoded symbols in error between 50 and 

500 m for a signal with T = 6.25 ms and a source and receiver located at z = 100 
m. 

 
Figure 32.   The input SNRa and percentage of encoded symbols in error between 50 and 

500 m for a signal with T = 6.25 ms and a source and receiver located at z = 150 
m. 
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Figure 33.   The input SNRa and percentage of encoded symbols in error between 50 and 

500 m for a signal with T = 6.25 ms and a source and receiver located at z = 200 
m. 

 
Figure 34.   The input SNRa and percentage of encoded symbols in error between 50 and 

500 m for a signal with T = 12.5 ms and a source and receiver located at z = 5 m. 
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Figure 35.   The input SNRa and percentage of encoded symbols in error between 50 and 

500 m for a signal with T = 12.5 ms and a source and receiver located at z = 50 m. 

 
Figure 36.   The input SNRa and percentage of encoded symbols in error between 50 and 

500 m for a signal with T = 12.5 ms and a source and receiver located at z = 100 
m. 
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Figure 37.   The input SNRa and percentage of encoded symbols in error between 50 and 

500 m for a signal with T = 12.5 ms and a source and receiver located at z = 150 
m. 

 
Figure 38.   The input SNRa and percentage of encoded symbols in error between 50 and 

500 m for a signal with T = 12.5 ms and a source and receiver located at z = 200 
m. 
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Figure 39.   The input SNRa and percentage of encoded symbols in error between 50 and 

500 m for a signal with T = 25 ms and a source and receiver located at z = 5 m. 

 
Figure 40.   The input SNRa and percentage of encoded symbols in error between 50 and 

500 m for a signal with T = 25 ms and a source and receiver located at z = 50 m. 
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Figure 41.   The input SNRa and percentage of encoded symbols in error between 50 and 

500 m for a signal with T = 25 ms and a source and receiver located at z = 100 m. 

 
Figure 42.   The input SNRa and percentage of encoded symbols in error between 50 and 

500 m for a signal with T = 25 ms and a source and receiver located at z = 150 m. 
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Figure 43.   The input SNRa and percentage of encoded symbols in error between 50 and 

500 m for a signal with T = 25 ms and a source and receiver located at z = 200 m. 

 
Figure 44.   The input SNRa and percentage of encoded symbols in error between 50 and 

500 m for a signal with T = 50 ms and a source and receiver located at z = 5 m. 
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Figure 45.   The input SNRa and percentage of encoded symbols in error between 50 and 

500 m for a signal with T = 50 ms and a source and receiver located at z = 50 m. 

 
Figure 46.   The input SNRa and percentage of encoded symbols in error between 50 and 

500 m for a signal with T = 50 ms and a source and receiver located at z = 100 m. 
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Figure 47.   The input SNRa and percentage of encoded symbols in error between 50 and 

500 m for a signal with T = 50 ms and a source and receiver located at z = 150 m. 

 
Figure 48.   The input SNRa and percentage of encoded symbols in error between 50 and 

500 m for a signal with T = 50 ms and a source and receiver located at z = 200 m. 
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APPENDIX B. 4-ARY FSK SIMULATION CODE 

% This code modulates a 4-ary FSK signal, extracts channel response 
data 
% from Bounce-Bellhop Eigenray outputs, applies multipath arrivals to 
% original signal, demodulates the received signal, and counts the 
% errors. 
% Functions Called: 
% mfskcoder - Converts sequence of encoded symbols into a sequence of 
%             channel symbols 
% mfskdemod - Demodulates received signal into a sequence of received 
%             channel symbols 
% mfskdecoder - Converts sequence of received channel symbols into a 
%               sequence of received encoded symbols 
%  
% William Jenkins 
% Naval Postgraduate School, Monterey, California, May 2010 
  
clear all 
load impulsedata5 
load wgnnoise 
  
%% Signal Generation 
encsym = 2; % Encoded Symbols per Channel Symbol 
Tfactor = 1; % Time/Frequency Scaling Factor 
Tsw = 0.025; % Seaweb Pulse Duration (sec) 
fc = 45000; % Carrier Frequency (Hz) 
% Arbitrary Sequence of Encoded Symbols 
msg = [0 0 0 1 1 0 1 1 1 1 1 0 0 1 0 0 ... 
    0 0 0 1 1 0 1 1 1 1 1 0 0 1 0 0]; 
msg = [msg msg msg msg]; 
N = length(msg)/2; % Number of Transmitted Channel Symbols 
kn = mfskcoder(msg); % Symbol Vector 
  
M = 2^encsym; % Number of Unique Channel Symbols 
T = Tfactor*Tsw; % Pulse Duration (sec) 
fs = 4*(fc+3/T); % Sampling Frequency (Hz) 
Ts = 1/fs; % Sampling Period (sec) 
T0 = floor(T/Ts); 
t = Ts*(0:(T0-1)); 
tvec = Ts*(0:N*length(t)-1); % Time Vector 
A = 1; % Amplitude 
  
freqM = kn/(2*T); 
freqtx = kron(freqM,ones(1,T0)); % Transmitted Frequency Vector 
  
% Transmitted Signal 
sig = A*0.5*(exp(1i*2*pi*(fc+freqtx).*tvec)... 
    +exp(-1i*2*pi*(fc+freqtx).*tvec)); 
  
% Loop over Source-Receiver Depths 
% 1 >>> z = 5m 
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% 2 >>> z = 50m 
% 3 >>> z = 100m 
% 4 >>> z = 150m 
% 5 >>> z = 200m 
geom = [1 2 3 4 5]; 
for zzz = 1:length(geom) 
    %% Multipath Arrival & Noise Addition 
    Range = zeros(1,length(time)); 
    errors = zeros(1,length(time)); 
    percent = zeros(1,length(time)); 
    SNRdB = zeros(1,length(time)); 
     
    % Loop over Source-Receiver Ranges 
    for nnn = 1:length(time) 
         
        delay_ind = zeros(1,length(time{nnn,geom(zzz)})); 
        prx = zeros(1,length(Prx{nnn,geom(zzz)})); 
        phase = zeros(1,length(phaserad{nnn,geom(zzz)})); 
        % Synchronization with First Arrival: 
        tvec = tvec+min(time{nnn,geom(zzz)}); 
  
        for dd = 1:length(time{nnn,geom(zzz)}) 
            if time{nnn,geom(zzz)}(dd) > max(tvec) 
                delay_ind(1,dd) = 0; 
                prx(1,dd) = 0; 
                phase(1,dd) = 0; 
            else 
                delay_vec = find(tvec >= time{nnn,geom(zzz)}(dd),1); 
                delay_ind(1,dd) = min(delay_vec); 
                prx(1,dd) = Prx{nnn,geom(zzz)}(dd); 
                phase(1,dd) = phaserad{nnn,geom(zzz)}(dd); 
            end 
        end 
        clear delay_vec 
        multi = zeros(length(time{nnn,geom(zzz)}),length(sig)); 
         
        for dd = 1:length(delay_ind) 
            if delay_ind(dd) == 0 
                multi(dd,:) = zeros(1,length(sig)); 
            else 
                multi(dd,:) = [zeros(1,delay_ind(dd)-1)... 
                prx(dd)*0.5*(exp(1i*2*pi*(fc+freqtx(delay_ind(dd):... 
                length(freqtx))).*tvec(delay_ind(dd):length(tvec)))... 
                *exp(1i*phase(dd))+exp(-1i*2*pi*... 
                (fc+freqtx(delay_ind(dd):length(freqtx))).*tvec... 
                (delay_ind(dd):length(tvec)))*exp(-1i*phase(dd)))]; 
            end 
        end 
         
        sigrow = find(time{nnn,1}(:) == min(time{nnn,1}(:))); 
        txsig = multi(sigrow,:); 
        multi(sigrow,:) = []; 
         
        noise = sum(multi); 
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        rxsig = txsig + noise; 
         
        %% Demodulation - FFT 
        % Demodulate received signal into received channel symbols: 
        knrx = mfskdemod(rxsig1,N,fs,fc,T,Tfactor); 
        % Demodulate received channel symbols into received encoded  
        % symbols: 
        [msgrx] = mfskdecoder(knrx); 
         
        %% Error Count 
         
        errvec = zeros(size(msg)); 
        for mm = 1:length(msg) 
            if msg(mm) == msgrx(mm) 
                errvec(mm) = 0; 
            else 
                errvec(mm) = 1; 
            end 
        end 
        % Total Encoded Symbols in Error: 
        errors(nnn) = sum(errvec); 
        % Percentage of Encoded Symbols in Error: 
        percent(nnn) = 100*errors(nnn)/length(msg); 
         
        % SNR at the Receiver (Input SNR) 
        % Average Power of the Transmitted Signal (Watts): 
        PIs = sum(abs(txsig.^2))/length(txsig); 
        % Average Power of the Noise (Multipath) (Watts): 
        PIn = sum(abs(noise.^2))/length(noise); 
        SNRdB(nnn) = 10*log10(PIs/PIn); 
         
        disp(['      Multipath SNR = ',num2str(SNRdB(nnn)),' dB']) 
        disp([num2str(errors(nnn)),... 
            ' Errors Counted - Multipath']) 
        Range(nnn) = 49+nnn; 
    end 
    filename = ['Geometry',num2str(zzz),'_T',num2str(T*1000)]; 
    save(filename,'errors','percent','SNRdB') 
end 
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APPENDIX C. DESCRIPTION OF THE BELLHOP 
UNDERWATER ACOUSTIC PROPAGATION MODEL 

The Bellhop underwater acoustic propagation modeling software used in this 

thesis is available as freeware from the Curtin Centre for Marine Science and Technology 

Web site.  The software can be found on the “Products” page of their site: 

http://cmst.curtin.edu.au/products/   

A link for more information is provided under the heading entitled “Underwater 

Acoustic Propagation Modeling Software (AcTUP).  Following the link will bring the 

user to a page that describes the software.  The current version is called “AcTUP V2.2L.” 

Under the heading entitled “Downloads,” the user will find a link to download the 

software, and a link to download the user manual.  Following the download link will 

bring the user to a form requesting end-user information.  After completing and 

submitting the form, the software can be downloaded. 

Installation should be completed with the aid of the user manual [8], as the 

manual’s instructions are helpful and accurate.  The AcTUP GUI uses an independently 

developed acoustic toolbox for MATLAB, and following the manual ensures that the 

toolbox is placed in the correct directory for the GUI to access. 

To run AcTUP once installation is complete, ensure the active MATLAB 

directory is correct, type “actup” in the command window, and hit enter/return.  The 

AcTUP GUI will initialize.  To begin configuring the model environment, select 

“Configure Environment & Propagation Models.”  If the user has saved a previous run 

definition, it can now be loaded by selecting “Load Run Definition.”   

To begin configuring an environment, select “Edit Environment.”  For a range-

independent environment, select “Edit Environment.”  A window appears requesting the 

horizontal range for the environment; the default value is zero.  After selecting “OK,” a 

window appears containing a list of layers being modeled.  The user may add as many 

layers as desired.  To edit each layer, select “Edit Layer.”  A window appears requesting 

information about the layer, including whether the layer is a bottom half-space (yes or 
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no) and the RMS roughness of the top interface of the layer.  Selecting “OK” after 

entering the desired values will bring the user to a new window in which physical 

properties of the layer are defined.  The environment must be defined as a vector.  For 

example, for an isospeed SSP of 1500 m/s, the compressional sound speed should be 

defined simply as [1500 1500].  The depth D between the sea surface and the bottom of 

the layer is similarly defined as [0 D].  Density, shear sound speed, compressional wave 

absorption, and shear wave absorption are similarly defined.  For a varying SSP, simply 

increase the size of the vector of the environmental values.  Keep in mind that the size of 

the vectors must be the same.  Select “OK” to apply the environment definition, and 

repeat the process for additional layers.  Select “OK” to close the window, and again to 

close the next window. 

The next step is to define the propagation model parameters.  Select “Edit Code-

Independent Propagation Parameters.”  Here the user defines a set of important values for 

the model.  It is useful to enter a title unique to the parameters being used, especially 

when modeling over a variety of parameters or environments.  A vector of frequencies 

can be defined, and the model will iterate over each frequency.  Vectors of source and 

receiver depths may also be defined.  In addition to iterating over depth, the model can 

iterate over range, enabling the user to define minimum and maximum ranges, as well as 

range resolution.  To ensure that the model outputs can be easily located and identified, it 

is also useful to define a subdirectory in which the output files can be placed.  A prefix 

for the output files is also desirable, and, like the title, should reflect the parameters of the 

model.  Select “OK” to return to the main definition window. 

Select “Edit Code-Dependent Propagation Parameters” to continue defining the 

model.  Select “Bounce+Bellhop.”  The first entry determines what kind of model will be 

run.  “R” conducts a ray trace, “C” calculates transmission loss of a coherent signal, “I” 

calculates transmission loss of an incoherent signal, “S” calculates transmission loss of a 

semicoherent signal, “A” calculates the channel response, and an additional value that is 

not listed, “E,” calculates eigenrays.  For the simulations in this thesis, “A” was selected.  

The next entry defines the beam type, and can either be set to Gaussian or geometric.  

The number of beams may be specified, along with the range of launch angles.  After 
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selecting “OK,” a window appears asking if the user wishes to use a bathymetry file.  To 

continue without a file, select “NO,” and then select “Exit Saving Changes.”  This returns 

the user to the main definition window.  At this point it is desirable to save the definitions 

that have just been set.  Select “Save Run Definition” and save the definition file in the 

desired directory. 

To run the model, select “Main Menu,” and then select “Run Current Model for 

ACTIVE Propagation Code.”  The model will begin running.  When the model has 

finished running, the user can select “Plotting Tools” to view the results.  If “A” was 

chosen in the code-dependent definition window, select “Amplitude-delay for each ray 

path” to view a plot of the channel response.  The abscissa is time, and the ordinate is the 

amplitude, expressed as a power ratio, between the received and transmitted signal. 

To manipulate the output files with user-generated code, navigate to the directory 

…\AcTUP\Output\xyz\Bounce+Bellhop\, where xyz is the user-defined subdirectory.  For 

the multipath analysis conducted in this thesis, data was extracted from the .ARR file 

type.  The first line of the file specifies the frequency modeled and the number of ranges 

tested.  The fourth line specifies the actual ranges modeled.  Output data begins with line 

six.  Here the number of amplitude-delay data points for a particular range is listed, 

followed by the data itself.  The data is organized as follows: the first column is the 

amplitude; the second column is the phase (due to reflections); the third column is the 

time of arrival; the fourth and fifth columns are the launch angles; and the fifth and sixth 

columns specify the number of bottom and surface reflections a ray has encountered, 

respectively. 

The code used to extract the data from the Bellhop output files is included in 

Appendix D. 
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APPENDIX D. DATA EXTRACTION CODE 

% This code extracts data from the .arr amplitude-delay output files 
% from Bellhop-Bounce and saves pertinent data in a .mat file. 
%  
% William Jenkins 
% Naval Postgraduate School, Monterey, California, May 2010 
clear all 
addpath('..\THESIS\Seastar Bellhop Data') 
d = [5, 50, 100, 150, 200]; % Depth of source and receiver (m) 
f = 45; 
for dd = 1:length(d) 
file = ['..\THESIS\Seastar Bellhop Data\Final Analysis\Seastar_',... 
    num2str(d(dd)),'m_',int2str(f*1000),'.arr']; 
fid = fopen(file); 
NumRanges = textscan(fid,'%*f %*d %*d %d',1); 
NumRanges = NumRanges{1,1}; 
for i = 1:6 
    tline = fgetl(fid); 
end 
N = str2double(tline)+1; 
% Assume Transmit Intensity of 1 W/m^2 @ 1 m. 
pref = 1.0E-6; % Reference Pressure (Pa) 
I0 = 1; % Intensity (Watts/m^2) 
SL = 170.7 + 10*log(I0); % Source Level (dB re 1 uPa @ 1 m) 
Ptx = pref*10^(SL/20); % Transmitted Acoustic Pressure (Pa) 
for j = 1:NumRanges 
    data{j,dd} = textscan(fid,'%f %f %f %f %f %d %d',N); 
    Pratio{j,dd} = data{j,dd}{1,1}(1:N-1); 
    Prx{j,dd} = Ptx*Pratio{j,dd}; 
    phasedeg{j,dd} = data{j,dd}{1,2}(1:N-1); 
    phaserad{j,dd} = phasedeg{j,dd}*pi/180; 
    time{j,dd} = data{j,dd}{1,3}(1:N-1); 
    angle{j,dd} = horzcat(data{j,dd}{1,4}(1:N-1),... 
        data{j,dd}{1,5}(1:N-1)); 
    bounces_bot{j,dd} = data{j,dd}{1,6}(1:N-1); 
    bounces_sur{j,dd} = data{j,dd}{1,7}(1:N-1); 
    if j == 451 
        N = 0; 
    else 
        N = data{j,dd}{1,1}(N)+1; 
    end 
end 
end 
save impulsedata5.mat Pratio Prx phasedeg phaserad time angle... 
    bounces_bot bounces_sur pref I0 SL Ptx d 
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